Back to Probase Demo

N2.
2023 Fall TJ Proof TST, P6

3
For every positive integer nn, there exists exactly one function fn ⁣:{1,2,,n}Rf_n\colon\{1,2,\dots,n\}\to\mathbb{R} such that for all positive integers knk\le n, fn(k)+fn(2k)++fn(knk)=1knk.f_n(k)+f_n(2k)+\dots+f_n\left(k\left\lfloor\frac nk\right\rfloor\right) = \frac1k\left\lfloor\dfrac nk\right\rfloor.Find f1000(1)f999(1)f_{1000}(1)-f_{999}(1)

Written by Calvin Wang

Discussion

  • Oron Wang

    JAT.